Task Allocation in MultiAgent Robotic Systems in
a Warehouse

Francis Bermillo, Kartik Gupta, Niraj Basnet

Abstract—In this paper we propose a distributed approach
in warehouse task allocation in which the multiagent system
use an evolutionary algorithm to exploit the best policies and
efficiently select tasks to complete in a warehouse simulation.
We use Cooperative Co-Evolutionary Algorithm with Hall of
Fame and Difference Evaluation to train the multiagent system
and compare its performance with a centralized approach com-
monly used in most autonomous warehouses. We show that the
performance of the distributed system greatly outperforms the
centralized approach in allocating tasks.

I. INTRODUCTION

-COMMERCE industry is a time critical domain with

warehouses as their backbone. Improving warehouse ef-
ficiency trickles down to the whole supply chain and logistics
resulting in reduced delivery times and costs. Today, ware-
houses are expanding and growing larger in size leading to
companies towards purchasing autonomous robots to develop
an efficient system for warehouse tasks, such as sorting,
packing, and delivery, to reduce overhead costs and boost
efficiency.

In this domain, a task refers to the fetching of the desired
object from its known source position and taking it to the
target location, which is usually the packaging station. While
the tasks are Single-Robot(SR) tasks, at any moment of time
there are multiple tasks to be completed during the same time.
The challenge that these robotic warehouses come across is
optimizing multiagent robots task allocation, coordination, and
path planning to create an efficient ecosystem, in which this
domain is still being actively researched due to the problem
being NP-hard.

In this paper, we focus on the problem of task-allocation
which refers to the distribution of tasks amongst the robots
across time to achieve maximum system performance, which
mostly refers to the reduction in the total costs incurred. This
cost can be measured in terms of time spent, distance traveled,
the power consumed, etc. As the e-commerce industry is time-
critical, we consider the total time spent as the cost to be
minimized.

Current autonomous warehouses use centralized methods to
distribute the tasks amongst the warehouse robots. An issue
with having a centralized planner is the robustness of the
system. Centralized systems have tight coupling due to one
central node handling information for all other nodes in the
system. Because of this, any error in the central node will
propagate out to the child nodes causing the whole system to
be in an undesired state. Thus, these types of approaches need
careful implementation to prevent the system from failure.
And because one central node handles all the processing of

information, the implementation of this node can become very
complex as one has to think of the best strategy to allocate
tasks while keeping a record of each node state.

Distributed systems overcome these challenges by creating
a loosely coupled architecture leading to a more robust system
for multiagents. Even if one of the agents fails, other agents
can still function on their own, hence promoting scalability
and flexibility in large complex warehouse systems. However,
distributed or decentralized approaches can produce highly
sub-optimal solutions as it is not guaranteed that an optimal
local solution would sum to an optimal global solution.
Recent approaches in distributed systems have been widely
applied to multiagent task allocation problems. One in par-
ticular, complements a distributed system with auction-based
method known as a market based approach[1][2][3]. Another
researched approach invokes the framework of token-based
task assignment[4]. However, both these approaches are time-
intensive which limits their usability[5].

Our approach is to give each agent the option to select
a task that will maximize the reward of the whole system
based on their current situation (i.e. the agent selects an
item in an item pick list that it is closest to in order to
complete the task faster). We will apply the cooperative co-
evolutionary learning algorithm, specifically the Hall-of-Fame
with differential rewards, to develop policies by the agents.
One key drawback of this method is the high computational
cost. We plan to take advantage of reinforcement learning to
initialize the policies of the agents to speed up the initial stages
of the coevolutionary learning algorithm.

By having each agent learn the best strategy when choosing
a task, based on their locations with respect to the locations
of the items and item drop off bins, our work contributes to
minimizing the time to complete a collection of tasks in a
warehouse setting.

II. BACKGROUND
A. MultiAgent Task Allocation

Centralized controllers are currently the most popular plat-
form for autonomous warehouse systems. These controllers
command agents with their tasks. Agents are not aware of
what tasks they are assigned and execute the task without
any coordination with other robots. These types of centralized
methods use dynamic scheduling to create an optimal and self-
sufficient environment. These are usually the popular solution
for smaller systems, easily decomposable tasks, and readily
available global state configuration. Though these methods
produce highly efficient task allocation, they are known to

fail with an increase in complexity, the number of agents,
management of multiple communication channels. They lack
responsiveness to changes in the environment and create
bottlenecks in multiagent systems.

Amongst the distributed systems, a popular approach is the
auction-based method[1][2][3], also known as a market based
approach. The idea is that all the agents act independently and
each agent maximizes their reward by trading tasks with other
agents through negotiations. MURDOCH]|6] is an approach
that uses this concept and dynamically distributes the tasks
using a publisher/subscriber communication method for a
diverse team. The tasks are dynamically allocated using a se-
quence of first-price single-round auctions in a greedy fashion.
Another approach that uses this concept is the TraderBots[7]
architecture. In [7], self-interested agents maximize individual
profit such that each agents profit results in a globally efficient
result.

Token-based task assignment is another framework quite
popular in task assignment. Tokens represent tasks to be
executed and are exchanged between the agents such that
the decision to accept token by each agent is solely based
on maximizing its utility[4]. The agent acts upon certain
threshold taking account of the availability of tokens, resource
constraints, and the team composition. It is widely used in
large-scale applications with extremely low computation and
communication requirements, but cannot guarantee an optimal
solution. Normally, the agents bid only on a single unallocated
task in each round. But this can result in highly suboptimal
allocation due to the possibility of synergies between multiple
tasks. To address this, combinatorial auction allows agents to
bid on bundles of tasks. However, it still poses a significant
challenge of finding appropriate bundles given the large num-
ber of tasks and limited time to allocate them[5].

B. Cooperative Co-Evolutionary Learning Algorithm with
Hall of Fame and Difference Evaluation

Coevolution is a natural way to evolve a group of agents
that must cooperate to achieve a system objective. A recent
approach to achieving coordination within a team is the use
of Cooperative Coevolutionary Algorithms or CCEAs. This
method involves simultaneously evolving multiple populations
and evaluating individual agent fitness based on how well they
interact with other agents within the system[8]. This algorithm
is an approach that comes naturally to situations where the
agents fail or succeed based on their teamwork. However, this
is challenged with the credit assignment problem. Using a
fitness function known as the Hall of Fame and Difference
Rewards help overcome this difficulty[9].

The concept of the Hall of Fame saves the top individuals
from each population for later generations[10]. This concept
is extended to CCEAs by keeping the best agent in each
population and groups them to form a “Hall of Fame.” This
ensures that desired genotypes are kept even if they poorly
perform due to stochastic events[9].

CCEA with hall of fame can be combined with difference
evaluations to optimize system performance. At the end of
each generation, the team that performs the best is compared

against the hall of fame members. If that team performed
better than all of the hall of fame members, then that team
is added to the hall of fame. The CCEA using hall of fame
and difference evaluations includes shaped fitness functions to
notify agents their individual contributions to the team and as
well as forming a bias fitness function by estimating optimal
collaborators based on the hall of fame[9].

Initialize N populations of k neural networks
foreach Generation do
foreach Population do

produce k successor solutions

mutate successor solutions
end

fori=1—2k-m do
randomly select one agent from each population
add agents to team T;
simulate T; in domain
assign fitness to each agent with Eq. 10
end
foreach Team T; do
if G(z|T:) > G(2|HOFyest) then
| add T; to HOF
end

end
foreach Population do
| select k networks using e-greedy
end
end

Fig. 1. Pseudocode for CCEA with Hall of Fame + Difference Rewards[9]

III. METHODOLOGY

In this section we describe the model of the warehouse and
the agents used for our experiments, followed by a discussion
on the method used.

A. Warehouse Model

We model our warehouse as a grid world where there
are p type of products that are stored at separate predefined
places in the warehouse along with m fixed dropoff points
distributed across the warehouse. Each item location p and
dropoff location m occupies one grid in the world.

To mimic a warehouse operation, we simulate each drop
off point as an order ¢ with a fixed number of items and the
quantity of each item in the list. We denote the requirement
of dropoff bins ¢ as t; = q1, .., gz, .., gp Where g, denotes the
required quantity of item type x at dropoff point <. Thus, the
task list is represented as 1" = tq, .., ty,-

The list of tasks 7" is allocated to a team of n homogeneous
robots which are required to complete the collection of tasks
in minimum possible time. These robots are designed as a
multiagent system with each agent equipped with the knowl-
edge of drop off bins and item locations as well as the task
list T'. All agents start at a fixed starting position at the center
of the grid world.

At the start of an episode, each agent selects one particular
task from 7. These selected tasks are removed from the task
list T', which is maintained by a central node and communi-
cated to each agent when requested. After an agent completes
a task, the agent can a new task from the task list and this
process continues for all agents until there are no remaining
tasks in the task list.

18] Q
[]
]
[]
nn]
nn
EE B
]
@ (0]

Fig. 2. A sample of the warehouse model with product types, p = 6 (in
yellow); dropoff points, m = 4 (in green); number of agents = 6 (in blue) and
gridworld of size 20x20

B. Learning Methodology

We utilize the CCEA algorithm with Hall of Fame +
Difference Reward learning framework for our problem. We
fix the task list to contain a fixed number of total tasks and
randomly select a distribution of this fixed total for each
simulation. Each policy in the agents’ population is maintained
as a neural network that takes as input the locations of the
dropoff bins, the item locations, and the current updated task
list. We use the algorithm found in [9] to model our algorithm.

IV. RESULTS

In the final result, we show that the performance of the
Hall of Fame + Difference Rewards give a significant boost
compared to a centralized system when doing task allocation
in a warehouse environment.

A. Experimental Setup

In our experiment, we created a grid world of size
1000x1000 with 6 product pickup locations and 2 dropoff
points. To scale the tasks with the increasing number of
agents,the total number of tasks was determined by multi-
plying 10 to the number of agents in the environment. The
maximum time steps allowed to complete the task list was
set to 50000 and evolution was limited to 2000 generations
for performance evaluation. For each simulation the global
reward assigned to the system was (50000 - total time taken).
During co-evolutionary learning, the network mutation was
accomplished by adding values drawn from a Gaussian dis-
tribution to network weights. The standard deviation with
which network weights were mutated was initialized as 0.7
and finally decreased down to 0.1 towards final generations.
Mutation was also carried out on 70 percent of total weights
at first and later decreased to 30 percent.The selection of

next generation policies was carried out using epsilon-greedy
approach with epsilon initialized as 0.2, and later decayed to
0 to end exploration. All of these parameter changes were
linearly varied throughout the overall span of generations. We
first simulated with 10 agents then increased it to 30. Each
agent had a population size of 15 policies for both the cases.

The task list was generated randomly at the start of the
simulation and the same was used for entire generations. As
mentioned above, we ignore path planning and collisions in
this experiment and we solely focus on task allocation. We
run 5 simulations of this setup to get a confidence interval of
our performance.

B. Analysis

To compare our approach with the prevailing centralized
approaches, we have used centralized sequential task alloca-
tion as our primary baseline to assess the performance of our
approach. In sequential task allocation, a central node allocates
task to robots in a sequential manner. As soon as any robot
completes the task, it gets the next task in the list that is
updated by the central node. This continues until all tasks
from the list are exhausted.

As is seen in fig 3, our implementation of CCEA with
HOF+DF outperforms the centralized approach. Our approach
outperforms the centralized approach after training over only
500 and 550 generations for cases with 10 agents and 30 agents
respectively. Also, in our simulations we observed that each
agent learns to specialize to perform task with one sector of
the warehouse, and moves to the next best sector when the
task there is completed.

Learning Curves and Comparison

30500
30000
29500
=]
]
= 29000
L
=
T 28500
=]
? 28000
10 Agents, STA
27500 = = 30 Agents, STA
—— 10 Agents, HOF +DF
27000 = 30 Agents, HOF+DF
o 250 500 750 1000 1250 1500 1750 2000
Generations
Fig. 3. The graph shows the performance learning curve for the CCEA

with HOF+DF, for two cases - 30 agents and 10 agents, as per the task
space explained in IV(A). The bold lines show the moving average of the
global reward over 50 generations and the lighter region indicates the standard
deviation observed over 5 simulations. The performance is compared with the
centralized algorithm, Sequential Task Allocation(STA).

V. CONCLUSION

In this paper, we had shown our contribution of minimizing
the time to complete a collection of tasks in a warehouse en-
vironment. Using the distributed approach, task allocation can
significantly improve over current centralized methods used

in automated warehouses using Cooperative Co-Evolutionary
Algorithms with Hall of Fame and Difference Evaluation. This
approach helped select better policies for finding time efficient
distribution of tasks among agents.

Although improving task allocation shows promise in boost-
ing warehouse efficiency, that alone will not be enough to
improve the efficiency of the whole warehouse ecosystem.
In our future work, we plan to tackle another part of this
ecosystem by incorporating collision free path planning with
our task allocation algorithm. In addition, because warehouses
are large in size, we plan to also test for scalability by
simulating in larger grid worlds and higher number of items
and agents.

REFERENCES

[1] Robert Zlot, Anthony Stentz, M Bernardine Dias, and Scott Thayer.
Multi-robot exploration controlled by a market economy. In Robotics
and Automation, 2002. Proceedings. ICRA’02. IEEE International Con-
ference on, volume 3, pages 3016-3023. IEEE, 2002.

[2] Lovekesh Vig and Julie A Adams. Coalition formation: From software
agents to robots. Journal of Intelligent and Robotic Systems, 50(1):85—
118, 2007.

[3] Esben H Ostergaard, Maja J Mataric, and Gaurav S Sukhatme. Dis-
tributed multi-robot task allocation for emergency handling. In Intelli-
gent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ Interna-
tional Conference on, volume 2, pages 821-826. IEEE, 2001.

[4] Paul Scerri, Alessandro Farinelli, Steven Okamoto, and Milind Tambe.
Allocating tasks in extreme teams. In Proceedings of the fourth
international joint conference on Autonomous agents and multiagent
systems, pages 727-734. ACM, 2005.

[S] Marc Berhault, He Huang, Pinar Keskinocak, Sven Koenig, Wedad
Elmaghraby, Paul M Griffin, and Anton J Kleywegt. Robot exploration
with combinatorial auctions. In /ROS, pages 1957-1962, 2003.

[6] Brian P Gerkey and Maja J Mataric. Sold!: Auction methods for
multirobot coordination. /EEE transactions on robotics and automation,
18(5):758-768, 2002.

[71 M Bernardine Dias. Traderbots: A new paradigm for robust and efficient
multirobot coordination in dynamic environments. Robotics Institute,
page 153, 2004.

[8] Mitchell A Potter and Kenneth A De Jong. Evolving neural networks
with collaborative species. In Summer Computer Simulation Conference,
pages 340-345. SOCIETY FOR COMPUTER SIMULATION, ETC,
1995.

[9] Mitchell Colby and Kagan Tumer. Shaping fitness functions for
coevolving cooperative multiagent systems. In Proceedings of the
11th International Conference on Autonomous Agents and Multiagent
Systems, volume 1, pages 425-432. AAMAS, 2012.

[10] Christopher D Rosin and Richard K Belew. New methods for competi-
tive coevolution. Evolutionary computation, 5(1):1-29, 1997.

VI. TEAM PERFORMANCE

Part Francis Kartik Niraj
Organisation 333% 33.3% 33.3%
Technical Contribution 25% 50% 25%
Coding 25% 25% 50%

Writing 50% 25% 25%

