
Multi-Scale Frame Interpolation

Kartik Gupta Sridhar Thiagarajan
Oregon State University
guptak@oregonstate.edu

thiagars@oregonstate.edu

Abstract

Video interpolation aims at generating a number of inter-
mediate frames given two frames, based on the desired in-
crease in frame rate of the video. Although most work in this
field predict exactly one intermediate frame, recent work by
Nvidia focus on generating variable number of frames. In
this work, we take inspiration from the optical flow litera-
ture which use coarse-to-fine approaches to refine the opti-
cal flow, and integrate that with Nvidia’s approach. We also
propose to use a refinement GAN on the output of our system
in order to generate more visually pleasing images. We con-
duct experiments and demonstrate results on the Adobe240
FPS dataset.

1. Introduction
The problem of video frame interpolation for generat-

ing slow-motion video has been extensively studied in the
field of computer vision. Video interpolation can also be
used to generate smooth transitions between two views. The
task of interpolation has also been used as a task during
self-supervised learning in order to learn optical flow be-
tween images [7] [6]. Although majority of the work fo-
cuses on generating a single intermediate frame, the recent
work Super-Slomo by Nvidia [4] propose a novel method-
ology to generate multiple intermediate frames based on
our need. They first compute bi-directional optical flow
between the input images using a U-Net like architecture.
A combination of these flows as an approximation to the
true flow, however, only works well in locally smooth re-
gions and produce artifacts around motion boundaries. To
address this issue, they employ another UNet to refine the
approximated flow and also predict something they term as
’visibility maps’. Finally, the two input images are warped
and linearly fused to form each intermediate frame.

In traditional computer vision techniques tasks like ob-
ject detection or optical flow estimation, things are often
done in a multi-scale fashion. For example, in the seminal
optical flow paper [10], they use a multi-level optical flow

framework which estimate and combine optical flow at dif-
ferent resolution. As the video frame interpolation task is
heavily reliant of optical flow, we posit that combining this
approach along with Nvidia’s superslomo work will give su-
perior results. Although this multi-scale approach has been
tried in a video interpolation setting, their work is limited to
generating a single intermediate frame [12].

Generative adversarial networks [2] [3] are nowadays the
go-to methods for image generation. They have also been
used in the context of image refinmenet recently, mostly no-
tably in the same related work which used the multi-scale
loss for estimating optical flow. Traditional losses like the
L1-loss often ignore small defects as it does not contribute
to the loss term as much as more important large scale fea-
tures. It is well known that adding an adversary solves
this problem satisfactorily [5], and hence we feel adding a
image-to-image GAN at the end of our network will result
in superior image quality.

2. Related Work
Deep Optical Flow Estimation : Over the past few

years, several works have cropped up in the field of op-
tical flow estimation using deep learning [11] [1]. These
methods rely on large datasets in order to learn to estimate
optical flow between two input images. The field of video
frame interpolation borrows a lot from literature in this area.
Straightaway using optical flow in order to compute inter-
mediate frames doesn’t take into account any occlusion rea-
soning, and hence we need more intelligent methods.

Super-Slomo Video interpolation Nvidia’s [4] is the
most relevant work to our project. Let Ft→0 and Ft→1 de-
note the optical flow from It to I0 and It to I1, where It
and I0 denote the images at time t and time 0 respectively.
After computing these two flow fields, they synthesize the
intermediate image Ît by an adaptive combination of these
fields and the images as follows

Ît = α0 � g(I0, Ft→0) + (1− α0)� g(I1, Ft→1), (1)

where g(·, ·) is a backward warping function, which is us-
ing bilinear interpolation and is differentiable. The parame-

1



ter α0 controls the contribution of the two input images and
depend on two factors: temporal consistency and occlusion
reasoning. � denotes element-wise multiplication, imply-
ing content-aware weighting of input images. For temporal
consistency, the closer the time step T = t is to T = 0,
the more contribution I0 makes to Ît; a similar property
holds for I1. On the other hand, an important property of
the video frame interpolation problem is that if a pixel p is
visible at T = t, it is most likely at least visible in one of
the input images,1 which means the occlusion problem can
be addressed. They also introduce a concept called visibility

maps Vt←0 and Vt←1. Vt←0(p) ∈ [0, 1] denotes whether the
pixel p remains visible (0 is fully occluded) when moving
from T = 0 to T = t. Combining the temporal consis-
tency and occlusion reasoning, the output image is given as
follows.

Ît=
1

Z
�
(
(1−t)Vt←0�g(I0, Ft→0)+tVt←1�g(I1, Ft→1)

)
,

where Z = (1 − t)Vt→0 + tVt→1 is a normalization factor
which is added to ensure brightness consistency.

Multi-Scale Flow estimation Multi-Scale Optimization
has traditionally been performed using a standard incremen-
tal multi-resolution technique to estimate flow fields with
large displacements. The optical flow estimated at a coarse
level is used to warp the second image toward the first at the
next finer level, and a flow increment is calculated between
the first image and the warped second image. Most notably,
this was used in [12] in order to do coarse-to-fine estimation
of optical flow for image interpolation. We use a similar ap-
proach in our work, where the optical flow output at one
resolution is upsampled using a bilinear upsampling, and
then refined further at the higher scale. This technique has
been used very commonly to handle large displacements.

Generative Adversarial Networks In the loss functions
used in the super-slomo work, there is no mechanism to
avoid solutions that may not be visually pleasing. A suc-
cessful approach used in research to output realistic solu-
tions can be to add adversarial losses. . It is well known that
adversarial training results in images with photo-realistic
properties such as improved sharpness and textures [5].

In GANs, there are two main components, the generator
and the discriminator. The generator is the module which
outputs an image, either from random noise or from a pre-
conditioned image. It’s goal is to output a realistic looking
image.

The discriminator tries to output the probability of an
image being fake or real, and it is trained to discriminate
the generator’s output from the real data. The loss for the
discriminator is (write discriminator loss).

1It is a rare case but it may happen that an object appears and disappears
between I0 and I1.

3. Methodology

3.1. Proposed Approach - Multi Scale, then GANs

Our approach, as discussed, is similar to Nvidia’s work,
but we do this at multiple-scales. We use three resolution
scales - 0.25, 0.5 and 1. The complete architecture can be
seen in figure 2. We propose to follow Nvidia’s approach
at the smallest resolution of 0.25 and have 2 UNet modules
- Flow Estimate and Flow Refinement. The Flow Estimate
is UNet model with 3 down and up stages. It takes as input
the image frames I0 and I1 and outputs two optical flows
F1→0 and F0→1. The flow refinement module has similar
architecture, just with different input and output channels. It
takes as input the I0, I1, Ft→0 and Ft→1 (interpolated from
F1→0 and F0→1) ,g(I0,Ft→0) and g(I1,Ft→1). g(I1,Ft→1)
denotes the image at time t generated using backward warp
of image I1 using Ft→1. It generates the refinement for
flows Ft→0 and Ft→1 along with the visibility maps.All this
is generated at a resolution of 0.25 times the full image res-
olution.

The next Flow Refinement performs similarly to the re-
finement module at 0.25 resolution, with a few differences.
Firstly, this module generates the flow and visibility maps
at a resolution of 0.5 times the full image resolution. Sec-
ondly, the input to this network does not come from a sim-
ilar resolution flow estimate module; instead it is generated
using bilinear interpolation of the outputs from the modules
at resolution 0.25. Also, this module consists of 4 down
and up stages in the UNet. Similarly,the next flow refine-
ment module works to generate optical flows at full image
resolution using upsampled outputs from the 0.5 resolution
modules. This final network is a UNet model with 5 down
and up stages.

We use the generator in order to refine the output of our
super-slomo, after the entire super-slomo module is trained
end-to-end. In our work, the generator’s loss is a combina-
tion of an L1 loss and a discriminator loss (adverserial loss).
This is to make sure that the content is generates is close to
the true refined frame, and the adverserial loss ensures that
the image is realistic looking. We use a traditional GAN
proposed initially, and also attempted to get a Wasserstein
GAN to work.

Figure 1: The complete network layout



3.2. Stage-Wise training
As there are several modules we are training, involving

networks estimating flow at multiple scales, it would be dif-
ficult to training it completely end-to-end from the start.
This might result in a vanishing gradient problem as the en-
tire network as a whole is too deep.

Hence, we employ a stage-wise training process, where
we first train the module which estimates the flow and inter-
polated images at a down-sampled resolution. We initially
start with a resolution of 0.25 times the original image res-
olution. After this, we move to a resolution of 0.5, then
to the full resolution. Finally, we train the entire network
end-to-end in order to fine tune the weights.

We switch to a higher resolution after training a reso-
lution one after a fixed number of epochs, chosen by pre-
inspection. It would be interesting to explore better methods
to do this, like the slope of the validation PSNR curve.

3.3. Dataset and preprocessing steps
To train our network, we use the 240-fps videos Adobe

dataset taken with hand-held cameras [9]. We used a simi-
lar data generating process to Nvidia’s work, except minor
modifications where necessary. During training, all video
clips are first divided into shorter ones with 12 frames in
each and there is no overlap between any of two clips. For
data augmentation, we randomly reverse the direction of en-
tire sequence and select 9 consecutive frames for training
just like their work. On the image level, each video frame
is resized to have a shorter spatial dimension of 360 and a
random crop of 352x352 plus horizontal flip are performed.

The main difference was that we needed training data at
multiple scales, hence we used resizing using bilinear inter-
polation to get ground truth data at several resolutions.

4. Results
We base our implementation off an open-source imple-

mentation of the super-slomo work [8]. To evaluate the re-
sults we track the PSNR value. We train the network in
multiple stages -
i) Train only the Flow Estimate Network(0.25x resolution)
and Flow Refinement Network(0.25 resolution),
ii) Train only FLow Refinement Network(0.5x resolution),
iii) Train entire network end-to-end,
iv)Train only Flow Refinement Network (full resolution),
v)Train entire network end-to-end.

The complete training was performed for 350 epochs
with 150,75,25,75 and 25 epochs at each stage respectively.
We wished to perform more training at full resolution com-
pared to lower stages. However, it proved to be computa-
tionally prohibitive. The learning was performed using a
batch size of 8, once again constrained by our GPU mem-
ory. Results provided in Table 1. For qualitative results,
please see Fig 3

Figure 2: PSNR calculated on validation dataset during
training. The steep jumps in the curve correspond to ad-
dition of the higher resolution module to the network.

Approach SuperSloMo
[4]

SuperSloMo
(reproduction
by [8]

ours

PSNR 31.1 29.8 29.5

Table 1: PSNR values calculated on the Adobe240fps
dataset. Please note that the results provided by the authors
are much higher compared to the results obtained using their
evaluation script.

5. Conclusion and Future Work

In conclusion, we used a coarse-to-fine approach for
optical flow estimation and combined this approach with
Nvidia’s super slomo work. We also propsoed to add a
generative adversarial network to the output inorder to re-
fine the image output, similar to prior work. We discuss
the stage-wise training process we used in detail in order
to train the network which estimates the flow at multiple
scales.

As we could not get the image refinement GAN to work
satisfactorily, a future avenue of work is to try more reli-
able GAN training algorithms [3] We attempted to get this
working, but could not due to lack of time. Also, we used
the original hyperparameters for balancing the loss compo-
nents, and this might not be optimal for our case. We used
this values as we did not have enough compute to do a thor-
ough hyperparameter search. This may lead to a significant
boost in performance in terms of PSNR. It would also be in-
teresting to use different loss function, like the Charbonier
loss, which have been shown to be more robust for optical
flow estimation [10].

References
[1] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,

V. Golkov, P. Van Der Smagt, D. Cremers, and T. Brox.
Flownet: Learning optical flow with convolutional networks.
In Proceedings of the IEEE international conference on com-
puter vision, pages 2758–2766, 2015. 1

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-



Figure 3: From left to right: ’Image at T=0, at T=t (ground truth), T=t(generated), T=1

erative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014. 1

[3] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. C. Courville. Improved training of wasserstein gans. In
Advances in Neural Information Processing Systems, pages
5767–5777, 2017. 1, 3

[4] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-
Miller, and J. Kautz. Super slomo: High quality estimation of
multiple intermediate frames for video interpolation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 9000–9008, 2018. 1, 3

[5] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham,
A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et al.
Photo-realistic single image super-resolution using a gener-
ative adversarial network. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4681–4690, 2017. 1, 2

[6] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala. Video
frame synthesis using deep voxel flow. In Proceedings of the
IEEE International Conference on Computer Vision, pages
4463–4471, 2017. 1

[7] G. Long, L. Kneip, J. M. Alvarez, H. Li, X. Zhang, and
Q. Yu. Learning image matching by simply watching video.
In European Conference on Computer Vision, pages 434–
450. Springer, 2016. 1

[8] A. Paliwal. Super slomo implementation. https://
github.com/charlespwd/project-title, 2013.
3

[9] S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and
O. Wang. Deep video deblurring for hand-held cameras.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1279–1288, 2017. 3

[10] D. Sun, S. Roth, and M. J. Black. Secrets of optical flow
estimation and their principles. In 2010 IEEE computer so-

https://github.com/charlespwd/project-title
https://github.com/charlespwd/project-title


ciety conference on computer vision and pattern recognition,
pages 2432–2439. IEEE, 2010. 1, 3

[11] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. Pwc-net: Cnns
for optical flow using pyramid, warping, and cost volume.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 8934–8943, 2018. 1

[12] J. van Amersfoort, W. Shi, A. Acosta, F. Massa, J. Totz,
Z. Wang, and J. Caballero. Frame interpolation with multi-
scale deep loss functions and generative adversarial net-
works. arXiv preprint arXiv:1711.06045, 2017. 1, 2


