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Abstract— With the advent of several real world robotic
applications like self-driving and surgical manipulation, the
importance of fast and efficient motion planning algorithms
is ever increasing. Existing motion planning methods, both
sampling based and search based, such as RRT* and A*
have computational complexity which increases exponentially
with the dimensionality of the problem. Recently, Motion
Planning Networks (MPNet) [1] was proposed to mitigate
some of the disadvantages of these traditional techniques, and
provide constant time and near-optimal solutions. Although
they showed promising results on several simulated tasks, the
utility of this algorithm on real-world robotic tasks is yet to
be ascertained. Real world tasks present several challenges,
ranging from stochasticity to uncertainty, which is seldom the
case in simulators. Our main contribution is a comparison of
MPNet with traditional motion planning algorithm on a real-
world robotic manipulation task. Also, we propose a novel
architectural extension where we discard the decoder of the
autoencoder, and propose to train the system end-to-end. Our
results show that this new method results in drastically faster
training of MPNet.

I. INTRODUCTION

Robotic motion planning is a field aimed at computing
collision-free paths from start to goal in given configuration
space. These sequential decision making tasks have a wide
variety of applications, in fields ranging from robotics to
surgical manipulation [2] [3]. Traditionally, sampling based
motion planning algorithms like RRT* [4], as well as
search based motion planning algorithms have been used
for these. Although they have highly desirable properties
like completeness and optimality, they lack in their ability
to provide constant time solutions and scale poorly with the
dimensionality of the space.

In this work, we focus on evaluating a deep learning
based iterative motion planning algorithm, called MPNet
(Motion Planning Network) [1], on real world manipulation
tasks. MPNet can plan trajectories in a cluttered 3D envi-
ronment for various start and multiple goal configurations.
For each start and goal pair, MPNet can generate multiple
collision-free paths in finite time. MPNet consists of two
components: an obstacle-space encoder and a path generator.
The first model is a Contractive AutoEncoder (CAE) [5],
which embeds the point cloud of the observed obstacles
in the environment into a latent space. The second neural
network learns to do motion planning for the given embedded
environment, start and goal configuration. We discuss this in
more detail in the algorithm description section.

Although Motion Planning Networks have been tested
on a variety of simulated tasks with varying utility, their
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performance has not been tested yet on real world tasks. Real
world tasks often induce a degree of stochasticity which is
seldom matched in the simulation. We begin by replicating
the literature’s result of this network in 2D environments.
Subsequently, we test the algorithm on a real-world robotic
manipulation task, evaluating its performance. In order to
benchmark MPNet’s performance, we also evaluate tradi-
tional sampling based planners like RRT* on the same task.
We use the Open Motion Planning Library [6], a library
with open source implementations of the sampling based
algorithms used as a benchmark.

II. RELATED WORK

Most of the motion planning algorithms are suffering
from the trade-offs between computational efficiency and
optimality [7] [8] [9] [10] [11] [4]. When developing an
algorithm that is computationally efficient, sampling-based
motion planning algorithms such as RRT [8] [9] [10] could
plan a complete yet non optimal path in real-time. An optimal
version of RRT called RRT* could provide optimal path
using sampling-based method, but the performance and effi-
ciency start to scale down due to the curse of dimensionality
(1] [9].

The research in using a neural network for motion plan-
ning became stagnant because of the lack of data and
the undeveloped architecture in the deep neural network in
early 2000s [12]. As deep learning architecture is becoming
mature, several neural network frameworks are established
for path generation in either static or dynamic environment.
One active field in deep learning based manipulation is
reinforcement learning [13] [14] [15]. Although reinforce-
ment learning algorithms are powerful, they often take large
amounts of data during the training stage, and most impor-
tantly, they need to explore the environment while learning
a policy. This can be dangerous in environments where
failed trajectories can be costly. An end-to-end reinforcement
learning approach was proposed which uses an algorithm
called Qt-opt for robot manipulation for grasping [13]. It is
an instance of a general reinforcement learning algorithm
called Q-learning. Although they show successful results,
letting agents or robots interact with the environment during
exploration is not always feasible or advisable.

The most relevant work in terms of deep learning for
motion planning is Motion Planning Networks [1]. They
demonstrate promising results in planning optimal paths effi-
ciently at several different dimensions. The proposed method
encodes the workspace of the robot directly from a point
cloud measurement, using an autoencoder, and generates the
end-to-end collision-free paths for the given start and goal



configurations. The results show that MPNet is not only
consistently computationally efficient in all environments
but also generalizes to completely unseen environments.
Nonetheless, MPNet failed to show its performance in real-
world applications. Therefore we aim to realize MPNets in
real robot and benchmark the performance with state-of-the-
art motion planning algorithms (RRT, RRT*, A*, D* etc) on
manipulation task using Kinova Jaco arm [16].

III. PROBLEM STATEMENT

MPNet only shows a fast and robust motion planning in
simulation, but do not provide implementation results on the
hardware. Also, the authors do not provide the joint and task
space trajectories of the simulated Baxter arm during the
simulation test case discussed in the paper. Thus, we want
to benchmark the feasibility of this algorithm both on the
simulation and hardware, with a robotic manipulator platform
(7DOF robotic arm) to validate this proposed method. The
essential problem that we are implementing, validating, and
testing is improving the solution finding time compared to
classical motion planning problem.

Problem (Near-optimal Motion Planning with Time
Efficiency): Given a triplet {X,Xfree,Xobs}, an initial state
Xinir and a goal region Xgoq1 C Xfree, find a path solution
T € Xfree such that ©(0) = Xy and t(end) € X404 and also
spends less time to plan before motion execution

Specifically in our problem, the inputs/outputs, the con-
trolled/uncontrolled parts are defined as,

Inputs = X, — Desired goal in the task space
Outputs = T € Xy, and robot joint states at each T
Controlled = joint positions of the robotic arm

Uncontrolled = uncertainties in sensors and calibrations

IV. ALGORITHM DESCRIPTION

We refer to the original work in [1] for the complete
algorithm description. We provide a brief description of the
overall method here.

The proposed method, called MPNet (Motion Planning
Networks), consists of two stages. The first phase comprises
of the offline training of the neural networks, while the
second part comprises the online motion planning algorithm.

A. Offline Training

The offline training module consists of two neural net-
works. The first model is a Contractive AutoEncoder (CAE)
which embeds the point cloud of the observed obstacles
in the environment into a latent space. The second neural
network learns to do motion planning for the given embed
environment, start and goal configuration.

1) Contractive AutoEncoder (CAE): : The contractive
autoencoder is used to embed the obstacles into an invariant
and robust feature space Z € R™, where m € N is the
dimensionality of the feature space. This network is trained
so as to minimize the reconstruction loss.

The model architecture consists of the encoding and the
decoding function, of 3 linear layers and a output layer. Each

linear layer is followed by the Parametric Rectified Linear
Unit. The decoder function is an inverse of the encoding
unit. The model takes a 1400xd sized vector as input where
1400 are the points along each dimension, and d € N>, is
the dimension of a workspace. For 2D workspaces, the three
layers have 512,256,128 hidden units respectively. We intend
to experiment with changing the size of the layers as well as
the effect of adding another layer the CAE so to incorporate
higher dimensional environment representation for the 6D
arm robot arm. This seems critical, as [14] have shown that
task specific encoding of task-space gives a significant boost
to the overall system performance.

2) Deep Multi-Layer Perceptron (DMLP): : This neural
network is the backbone of the planning algorithm. Given the
obstacle encoding Z generated by the CAE, the current state
x; and the goal state xy, the DMLP predicts the next state
Xr+1 which would lead the robot towards the goal region.

The DMLP is trained in a supervised manner using the
near-optimal, feasible trajectories generated RRT* algorithm
in various environments. The training objective is to mini-
mize the mean-squared-error (MSE) between the predicted
states ;41 and the actual next states given by the RRT* x;, .
For transfer to real robot, we plan to experiment by adding
Gaussian noise to the initial states while aiming for the same
destination point. This can be visualized as creating a valley
in which the robot is invariant to the small disturbances.

The model architecture of the DMLP consists of 9 layers
where each layer is a sequence of a linear layer, a Parametric
Linear Unit (PReLU) and Dropout. This is followed by
the tenth and eleventh layer which do not use Dropout
and transform the inputs to 32 units. This is taken by
the final layer and transformed to the dimensions of the
robot configuration space. Generally, the Dropout layers are
dropped during the testing phase. However, here the Dropout
layers are not dropped since it adds stochasticity to the
MPNet.

B. New Offline Training

We do several attempts to make some improvements or
differences with the original MPNet. One of the successful
approaching is to modify the existing MPNet architecture.
We keep other parts same with the original MPNet, but
abandon decoder from the original architecture and proceed
to end-to-end training on different environments with paths.
Without tuning DMLP after finish tuning Contractive Au-
toEncoder in the original architecture, we combine encoder
with original DMLP to form a new model of DMLP and
tune both of them in the same time. The new model of
DMLP still needs the obstacle encoding Z generated by
encoder, the current state x; and the goal state xy as the
input. The new model of DMLP predicts the next state x;; |
for motion planning. To tune the DMLP model, we still use
mean-squared-error (MSE) to calculate the loss between the
predicted states ;1 and the actual next states given by the
RRT* x;11. Meanwhile, it will calculate the loss of encoded
environment, which is to tune the encoder.
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Fig. 1.

Modified MPNet Architecture

C. Online Path Planning

The online path planning phase utilizes the neural models
trained in the offline phase for motion planning in cluttered
and complex environments. The online phase exploits the
neural models from the offline phase to do motion planning
in cluttered and complex environments. The overall flow of
information between the CAE, DMLP and the online motion
planner is shown in 2] The overall Online Path Planning
methodology is shown in [3] Essentially the path planning
step consists of recursively utilizing the DMLP to output
the next path step with additional checks and iterations for
robustness. We do not intend to modify this section of the
algorithm. The reader is encouraged to refer to [1] for a more
detailed explanation.

V. METHODOLOGY

This section will explain our primary methodologies for
this project. The proposed methods are mainly based on the
original work from [1], however, the methods and steps state
below are not meant to be the final approach to accomplish
this project.

Our aim is to realize the MPNet method onto a real hard-
ware, while performing non-trivial task, which has higher
dimensionality and hardware realization. For example, the
expected test case is the robot end-effector moves from one
place to another and completes the motion planning without
hitting the randomly placed obstacles.

A. Data generation

Two types of data will be generated in this project. We
use simulation engine provided by [1] to generate 2D data
with points as robot and blocks as obstacles. 3D data will
be generated using Kinova Jaco arm in Movelt and Gazebo
simulation engines. We will also use rigid blocks to form 3D
cluttered environment. We aim to generate 1000 3D cluttered
environments and 10000 paths in both 2D and 3D for training
samples.

B. Training of Autoencoder and DMLP

To validate the feasibility of MPNet, we start at low
dimensional planning problem. We will use 2D data to
train the autoencoder and DMLP, and test the entire motion
planning pipeline with random start and goal configurations.
Same process will then be repeated using 3D data generated
by Kinova arm from Gazebo and Movelt. Simulation engines
with Kinova Jaco arm are shown in Figure ?? and Figure 4]
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Fig. 2. The offline and online phases of MPNet. The grey shaded blocks
indicate the training objectives. The sky-blue and white blocks represent
frozen and non-frozen modules, respectively. The frozen modules do not
undergo any training. [1]

C. Hardware Test

After the training and testing are complete in simulation,
we will use the trained network and motion planner on actual
Kinova Jaco arm to complete a manipulation task in cluttered
space. Computational time and path cost will be recorded in
the process.

D. Benchmark with conventional MP algorithms

We will use state-of-the-art motion planning algorithms to
compute path for Kinova Jaco arm on the same manipulation
task, in order to benchmark their computational efficiency
and optimality of resulting paths with MPNet [1]. In this
project we chose RRT* as the main motion planning algo-
rithm we are going to benchmark with.



Algorithm 1: MPNet(2init, Tgoal, Lobs)
1 Z+ f(xobs)

2 7 ¢ NeuralPlanner(z;,i¢, Tyoa1, £);
3 if 7 then

4 T ¢ LazyStatesContraction(r)
5 if IsFeasible(7) then

6 | return 7

7 else

8 Tuew — Replanning (7, Z)

9 Tnew ¢ LazyStatesContraction(mew)
10 if TsFeasible(7,ey ) then

1 | return 7,

12 return &

Algorithm 2: NeuralPlanner(xgtart, Tend, £)

1 T {xstart}:'rh — {xend}:

2T I

3 Reached < False;

for i < 0 te N do

Znew ¢ DMLP (Z, 7*(end), 7"(end))
T 7 U {Tpew |

Connect < steerTo(7*(end), 7°(end))
if Connect then

L T ¢ concatenate(T*, ")

.

=T - -

10 return 7

n | SWAP(7*,7P)

12 return &

Fig. 3. Online Path Planning Algorithm. [1]

Fig. 4. Kinova Jaco arm in Movelt environment. We use RRT* with this
environment to generate data for MPNet.

VI. RESULTS
A. Simulation

Both of the original and the modified architecture MPNet
converged their loss after training for 500 epochs. In this
section we show three sets of results. To evaluate the
performances of both original and modified MPNet against
RRT#*, we randomly pick a few environments from 30000
environments to plan paths with randomly chosen start
and goal configurations. We also compared path planning
performance between original and modified MPnet.

1) Training of both architectures: In figure 9] we demon-
strates how the losses were changing in both original and

modified MPnet architectures. Note that both orignal and
modified MPnet training converged to a total loss of 16 and
3.2 after 500 epochs respectively.

2) Original MPnet vs. RRT*: In one of the planning
scenario, original MPnet computes an optimal path (Figure
[6) in 0.26 s, compared to RRT* which took approximately
0.4 s (see Figure [).

3) Modified MPnet vs. RRT*: Figure [§] shows that a
path planned by modified MPnet architecture is surprisingly
similar to RRT* in this scenario, which could not only
guarantee optimality but also reduce the computational time
(0.08 s), compared to RRT* (0.48 s). Note that this is only
a path planning scenario.

4) Original MPnet vs. Modified MPnet: In overall path
planning, original MPnet architecture can produce 90 percent
feasible paths from 60 random environments, while modified
MPnet architecture can generate 98 percent feasible paths
from 60 random environments. Average planning time for
each path is about 0.43 s for original MPnet, whereas
modified MPnet takes about 0.86 s on average to plan each
path.

Fig. 5. A sample path computed using RRT* in 0.41 seconds.
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Fig. 6. MPNet path planned in 0.26s, whereas RRT* takes around 0.4
seconds. (Blue line - RRT* path as ground truth, red line - MPNet path).

B. Hardware Experiments

We used Jaco arm to validate path feasibility of MPNet
output using both original and new architectures. For each
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RRT* path planning using 0.48s to finish.
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Fig. 8. Modified architecture MPNet path computed in 0.08s is indicates
in red. RRT*’s path is indicated in blue.

case, MPNet generated collision free waypoints based on
the input environment for high-level planning. We created a
move arm node in ROS to receive the generated waypoints
and move between each pair of points. During movement
between each waypoints, this node calls OMPL through
Moveit to use RRT to complete small distances. Figure [I0]
showed our experimental setup based on the 2D environ-
ment discussed in previous sections. The arm successfully
followed the desired waypoints form MPNet and reached
goal positionsﬂ

VII. DISCUSSIONS
A. Architecture Change to Original MPNet Setup

Architecture changing may lead to really bad results in
many cases. However, in this project, we have the better re-
sults on modified MPNet, when comparing with the original
MPNet model. Although, the average time consumption of
path planning increase from 0.43s to 0.86s (original MPNet
has more infeasible paths which may cause less planning
time), the change of eliminating decoder part and use end-
to-end training improves a lot. Baseed on our resutls, the per-
centage of finding feasible paths increased from 90% to 98%
on our modified MPNet, and it generates more approaching
optimal paths than the results of the original MPNet. The

IFor the video for this test, click lherel

Fig. 10. Experimental Setup with Jaco Arm

trade-off between computational efficiency and optimality
always exists. Based on this project, the new architecture
performs much better on optimatliy with acceptable sacrifice
on computational time. The reasons of improvements on new
architecture comparing with the original MPNet include the
limitation of Contractive AutoEncoder model and training
efficiency of new model, etc. For more precise analysis, we
need to do more different environments and paths training
on both original and modified MPNet

B. Implementations on 7DOF Kinova Jaco Arm

We intended to implement this approach in 3D to validate
whether it is able to move a 7DOF arm in space. Our
proposed pipeline to accomplish this task consists of new
method on data generation, training process, and also a local
planner to accomplish the annotated procedures in Figure [T}

Training pipeline Execution pipeline

Pass environment, start
and desired goal to

Generate Optimal
Motion Data using
RRT* (2D / 3D)

—

Train MPNet

t

4

Generate random
environments (2D /
3D)
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Fig. 11.

Neural Planner (MPNet)

Apply MPNet to
generate trajectory
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v

Local Planner
execution between
each pair of waypoints

Proposed System Pipeline


https://www.youtube.com/watch?v=0TMy79l9GVQ&list=PLevuDYk5OI6TOd82fLO8eJmpnP3TJu6ja

1) Data generation for 3D: In order to implement MPnet
framework on 7 DOF arm, we need to generated significant
amount of data to train the network. Refer to the sample size
generated by the authors of original MPnet, we decided to
randomly generated 1000 paths using RRT* in one random
3D environment, and repeated the process for a total of 50
environments. Instead of recording the end effector pose
in Cartesian space, we recorded 7 joint states throughout
the entire trajectory. Note that such way of data generation
could work well at generalizing among environments and
path planning.

Simulation in Movelt and ROS were used for data gener-
ation of 7 DOF kinova arm. However, due to limitation of
disk space and ROS, we failed to generate data automatically
through Movelt for all 50 environments. We then tried
generating 10000 path data in only one environment but the
entire process was unexpectedly time consuming. The reason
is because RRT* that set by Movelt is using high iterations
to find an optimal path and this can take longer time for
planning.

2) Training for 7DOF Arm: We trained a DMLP in order
to generate waypoints for the Kinova arm. The DMLP struc-
ture in the same as discribed above, but with an additional
linear layer. The inputs to this DMLP are the current joint
pose and the target joint pose of the arm and it outputs
the the next desired joint pose along the way to reach the
goal pose. This was trained on 1800 paths generated on
one environment consisting of 41000 waypoints in total. To
augment our training data, we reversed all paths to double
the training samples. Training was done with MSE loss
with Adagrad optimisation. Test samples predicted waypoints
which were collision free and ,by visual inspection, seemed
to be along the path towards the goal.

3) Local Planner in 3D: When we extended the problem
to 3D environment, the robot also needs local planner to
know how to move between waypoints x; — x», or between
a pair of joint states g; — ¢, because high-level MPNet
only gives collision free path without knowing the exact
configurations of the robot. Thus, in order to move between
each waypoint (joint states), a local planner is needed to
handle self-collision and environment collision check. The
motivation of a local planner also comes from a similar re-
plan function mentioned in author’s original method. The
re-plan function tries to re-generate waypoints (joint states)
from MPNet if obstacles are between two existing points.
In author’s method, this is simply calling an Euclidean
distance between two points and check if obstacles lie in
between. However, the complexity of 3D re-plan is not
simply checking obstacle. This re-plan should check self-
collision, environment collision, and feasibility of the IK
solutions between two waypoints (or joint states). This
requires interfaces with Moveit! for all collisions check and
IK feasibility.

If we developed such local planner, it will only be used
when high-level planning requires queuing additional points
from MPNet because of the current points fail at the local
planner. However, calling a local planner in such cases would

presumably have similar time to perform an near optimal
path planning locally.

VIII. CONCLUSION AND FUTURE WORK

We implemented and tested motion planning networks on
a real robot and several synthetic 2D domains, benchmarking
its performance with a traditional motion planning algorithm
(RRT*). We consistently found MPNet to be faster, giving
real-time, collision free paths for several goal and start
configurations. We improved the training process of MPNet
by finding that training it end-to-end, rather than training the
encoder separately gives better performance and results in
faster training time. Hardware experiments were run on the
Kinova Jaco arm to verify MPNet’s robustness for planar
manipulation tasks, and we discussed the challenge with
implementing a fully 3D motion planning task in hardware
with our current framework.

There are several possible extensions to MPNet that we
would like to explore in the future. One interesting extension
we would like to pursue is the application of MPNet like
algorithms for multi-agent path planning problems. Tradi-
tional algorithms like M* scale poorly with dimension, and
hence there is scope for faster real-time deep learning based
algorithms. Another line of future work would be to come
up with an extension of MPNet for partially observable
environments. Several robots, especially in marine and aerial
domains have to deal with uncertainity in their environment,
and coming up with a Bayesian neural network which could
reason and plan around these uncertainities in real-time
would be a good avenue for further research.
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